Faltings Modular Height and Self-intersection of Dualizing Sheaf

نویسنده

  • Atsushi Moriwaki
چکیده

is finite under the following equivalence (cf. Theorem 3.1). For stable curves X and Y over OK , X is equivalent to Y if X ⊗OK OK′ ≃ Y ⊗OK OK′ for some finite extension field K ′ of K. In §1, we will consider semistability of the kernel of H(C,L) ⊗ OC → L, which gives a generalization of [PR]. In §2, an inequality of self-intersection and height will be treated. Finally, §3 is devoted to finiteness of stable arithmetic surfaces with bounded self-intersections of dualizing sheaves We would like to thank Professor J.-B. Bost, S. Lang and L. Szpiro for their helpful comments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Arithmetic Self-intersection Number of the Dualizing Sheaf on Arithmetic Surfaces

We study the arithmetic self-intersection number of the dualizing sheaf on arithmetic surfaces with respect to morphisms of a particular kind. We obtain upper bounds for the arithmetic self-intersection number of the dualizing sheaf on minimal regular models of the modular curves associated with congruence subgroups Γ0(N) with square free level, as well as for the modular curves X(N) and the Fe...

متن کامل

The Chowla–Selberg Formula and The Colmez Conjecture

In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.

متن کامل

Chowla-selberg Formula and Colmez’s Conjecture

In this paper, we reinterpret the Colmez conjecture on Faltings’ height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving Faltings’ height of a CM abelian surface and arithmetic intersection numbers, and prove that Colmez’s conjecture for CM abelian surfaces is equivalent to the cuspitality of this modular form.

متن کامل

Semi-stable extensions on arithmetic surfaces

Let S be a smooth projective curve over the complex numbers and X → S a semi-stable projective family of curves. Assume that both S and the generic fiber of X over S have genus at least two. Then the sheaf of absolute differentials ΩX defines a vector bundle on X which is semi-stable in the sense of Mumford-Nakano with respect to the canonical line bundle on X . The Bogomolov inequality c1(Ω 1 ...

متن کامل

Arithmetic Intersection on a Hilbert Modular Surface and the Faltings Height

In this paper, we prove an explicit arithmetic intersection formula between arithmetic Hirzebruch-Zagier divisors and arithmetic CM cycles in a Hilbert modular surface over Z. As applications, we obtain the first ‘non-abelian’ Chowla-Selberg formula, which is a special case of Colmez’s conjecture; an explicit arithmetic intersection formula between arithmetic Humbert surfaces and CM cycles in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994